UNIVERSITY OF CALIFORNIA
 Department of Electrical Engineering
 and Computer Sciences
 Computer Science Division

Prof. R. Fateman

Fall, 2001

Solutions: CS 164 Midterm 1: September 26, 2001, 9:00AM

1. [20 points] Here is a table describing an automaton with 2 states. The start state is S . a. Draw a diagram of the automaton in the space to the right of the table. I'm not good at drawing in tex. The expected solution has two states, S and T. From S to itself is an arc labeled 0,1 . From S to T is an arc labeled 0 . From T to T is an arc labeled 0 . T is a final stae, S has an incoming arc as the initial state.
b. Write down a simple regular expression that describes the same language that is recognized by this automaton.
($0 \mid 1$) $* 0$ is the simplest solution.
c. In the space below, draw a DFA that accepts the same language. Use as few states as possible.

Two states, the same as above except that instead of an arc from S to S labeled 0,1 there is an arc from T to S labeled 1.
d. Write a context free grammar G0 that describes the same language.

Here's one.

```
X -> T0
T -> OT | 1T | epsilon
```

2. [5 points] Write down a precise definition of $L(G)$ the language generated by any context free grammar G.

We expect something like
$\mathrm{L}(\mathrm{G})=\{\mathrm{a} 1 \mathrm{a} 2 \ldots \mathrm{an}$ | ai is in terminals(G), S==>* a1 a2 \ldots an, S is start(G)\} Or in English.. a set of all strings of terminal symbols derived from the start symbol S using rules of G.

State	Transitions		Final State?
	$0 \quad 1$		
S	$\mathrm{~S}, \mathrm{~T} \quad \mathrm{~S}$		
T	T	yes	

3. [6 points] Suppose grammar $G 1$ has only one rule rewriting X, namely $X \rightarrow Y Z W$
a. If we know that $a \in \operatorname{First}(\mathrm{Y})$, what can you conclude about $\operatorname{First}(\mathrm{X})$?

A is in First(x)
b. Under what condition is $\operatorname{First}(\mathrm{W}) \subset \operatorname{First}(\mathrm{X})$?
if $\epsilon \in \operatorname{First}(Y)$ and $\epsilon \in \operatorname{First}(Z)$.
c. Under what condition is $\epsilon \in \operatorname{First}(X)$?

The condition above with $\epsilon \in \operatorname{First}(W)$ also.
4. [5 points] Here are the rules for a grammar G2 with start symbol S

$$
\begin{gathered}
S \rightarrow a S \\
S \rightarrow b
\end{gathered}
$$

Complete writing a recursive descent parsing program parse that returns yes, given a lisp list that constitutes a sentence in $\mathrm{L}(\mathrm{G} 2)$. We give you two useful parts already.

```
(defun parse (tokens)(s)(if (empty tokens) "yes"))
(defun eat(h) (cond((equal h (car tokens))(pop tokens))
    (t (error "stuck at ~s" tokens))))
;; sample test: (parse '(a a b))
;; answer
(defun s()(case (car tokens)
    (a (eat 'a)(s))
    (b (eat 'b) t)))
```

5. [10 points] What is the result of running your Tiger lexical analysis program fsl on a file containing this material:
```
if then loop else23 >>>= 45
"hello /* world" iconst */
```

Run it to see the answer. It starts with ((if if (1.2)) (then then ...) ...)
6. [12 points]

On the next page is an LL(1) Parsing Table for a grammar G3 with start symbol E.
a. What are the rules of the grammar G3?

```
E -> TX
T -> iY | oEc
X-> pE | epsilon
Y-> mT | epsilon
\begin{verbatim}
```

	i	m	p	o	c	$\$$
E	TX			TX		
X			pE		ϵ	ϵ
T	iY			oEc		
Y		mT	ϵ		ϵ	ϵ

b. What are the terminal symbols of G3?
i o c m p and maybe $\$$
c. Trace each stack configuration in the parsing of the input string $\{\backslash t t$ o i $c \backslash \$\}$. We have given you the first stack contents: \begin\{verbatim\} } step stack input

```
1.
E \$
o i c \$
2. TX\$
3. oEcX\$
4. EcX\$
5. TXcX\$
6. \(\quad\) iYXcX\$
7. YXcX\$
8. XcX \$
9. cX\$
10. \(X \$\)
11. \$
Note that this grammar, with the substitutions of \(m=*, p=+, o=(\) and \(c=\) ) should be familar to you.
```

7. [2 points]
a. Describe any unusual piece of clothing worn on Monday Sept. 24, by Prof. Fateman for the first 8 minutes of CS164 lecture.

You had to be there to see it.
b. How many CS164 lectures were delivered without the use of the video projector?

Ditto.

